Louis-Armstrong

Fibrosis: from mechanisms to medicines

  • 1.

    Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Allen, R. J. et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir. Med. 5, 869–880 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Kim, H. Y. et al. Genotype-related clinical characteristics and myocardial fibrosis and their association with prognosis in hypertrophic cardiomyopathy. J. Clin. Med. 9, E1671 (2020).

    PubMed 

    Google Scholar
     

  • 4.

    Young, C. N. J. et al. Total absence of dystrophin expression exacerbates ectopic myofiber calcification and fibrosis and alters macrophage infiltration patterns. Am. J. Pathol. 190, 190–205 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Schiller, H. B. et al. The Human Lung Cell Atlas: a high-resolution reference map of the human lung in health and disease. Am. J. Respir. Cell Mol. Biol. 61, 31–41 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Zepp, J. A. et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134–1148 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Xie, T. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625–3640 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Peyser, R. et al. Defining the activated fibroblast population in lung fibrosis using single-cell sequencing. Am. J. Respir. Cell Mol. Biol. 61, 74–85 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Xu, Y. et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1, e90558 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Wu, H. et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 180, 107–121 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Adams, T. S. et al. Single cell RNA-seq reveals ectopic and aberrant lung resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2019).


    Google Scholar
     

  • 15.

    Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Halpern, K. B. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962–970 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Friedman, S. L., Roll, F. J., Boyles, J. & Bissell, D. M. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc. Natl Acad. Sci. USA 82, 8681–8685 (1985).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Krenkel, O., Hundertmark, J., Ritz, T. P., Weiskirchen, R. & Tacke, F. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 8, E503 (2019).

    PubMed 

    Google Scholar
     

  • 22.

    Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019). This study dissected unanticipated aspects of the cellular and molecular basis of human liver fibrosis at a single-cell level, providing a framework for the discovery of rational therapeutic targets in liver cirrhosis.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Efremova, M. & Teichmann, S. A. Computational methods for single-cell omics across modalities. Nat. Methods 17, 14–17 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Ratziu, V. & Friedman, S. L. Why do so many NASH trials fail? Gastroenterology https://doi.org/10.1053/j.gastro.2020.05.046 (2020).

  • 27.

    Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019). This study uncovered anatomically discrete, functionally distinct subsets of fibroblasts in the context of arthritis.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature (in the press, 2020).

  • 31.

    Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Rinkevich, Y. et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Guerrero-Juarez, C. F. et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat. Commun. 10, 650 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Bergmeier, V. et al. Identification of a myofibroblast-specific expression signature in skin wounds. Matrix Biol. 65, 59–74 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Correa-Gallegos, D. et al. Patch repair of deep wounds by mobilized fascia. Nature 576, 287–292 (2019). This work identified a specialized subset of fibroblasts, fascia fibroblasts, which gather the surrounding ECM and then rise to the surface of the skin after wounding.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Montero-Melendez, T. et al. Therapeutic senescence via GPCR activation in synovial fibroblasts facilitates resolution of arthritis. Nat. Commun. 11, 745 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Schafer, M. J., Haak, A. J., Tschumperlin, D. J. & LeBrasseur, N. K. Targeting senescent cells in fibrosis: pathology, paradox, and practical considerations. Curr. Rheumatol. Rep. 20, 3 (2018).

    PubMed 

    Google Scholar
     

  • 40.

    Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Schneider, R. K. et al. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell 23, 308–309 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    El Agha, E. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 20, 261–273 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Scott, R. W., Arostegui, M., Schweitzer, R., Rossi, F. M. V. & Underhill, T. M. Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration. Cell Stem Cell 25, 797–813 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Soliman, H. et al. Pathogenic potential of Hic1-expressing cardiac stromal progenitors. Cell Stem Cell 26, 459–461 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Mahmoudi, S. et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 574, 553–558 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Troeger, J. S. et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143, 1073–1083 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Wohlfahrt, T. et al. PU.1 controls fibroblast polarization and tissue fibrosis. Nature 566, 344–349 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Song, G. et al. Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18, 797–808 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Rezvani, M. et al. In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18, 809–816 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 2387 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Pakshir, P. & Hinz, B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68-69, 81–93 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Januszyk, M. et al. Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model. Organogenesis 10, 186–193 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Froese, A. R. et al. Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 194, 84–96 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Lindsey, M. L., Iyer, R. P., Jung, M., DeLeon-Pennell, K. Y. & Ma, Y. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J. Mol. Cell. Cardiol. 91, 134–140 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Craig, V. J., Zhang, L., Hagood, J. S. & Owen, C. A. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 53, 585–600 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158, 1913–1928 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462–1474 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Kottmann, R. M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am. J. Respir. Crit. Care Med. 186, 740–751 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Liu, G. & Summer, R. Cellular metabolism in lung health and disease. Annu. Rev. Physiol. 81, 403–428 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Nigdelioglu, R. et al. Transforming growth factor (TGF)-β promotes de novo serine synthesis for collagen production. J. Biol. Chem. 291, 27239–27251 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Park, S. Y., Le, C. T., Sung, K. Y., Choi, D. H. & Cho, E. H. Succinate induces hepatic fibrogenesis by promoting activation, proliferation, and migration, and inhibiting apoptosis of hepatic stellate cells. Biochem. Biophys. Res. Commun. 496, 673–678 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Lian, N. et al. Curcumin regulates cell fate and metabolism by inhibiting hedgehog signaling in hepatic stellate cells. Lab. Invest. 95, 790–803 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Renal Physiol. 313, F561–F575 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Wei, Q. et al. Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am. J. Physiol. Renal Physiol. 316, F1162–F1172 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Ge, J. et al. Glutaminolysis promotes collagen translation and stability via α-ketoglutarate-mediated mTOR activation and proline hydroxylation. Am. J. Respir. Cell Mol. Biol. 58, 378–390 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Bai, L. et al. Glutaminolysis epigenetically regulates antiapoptotic gene expression in idiopathic pulmonary fibrosis fibroblasts. Am. J. Respir. Cell Mol. Biol. 60, 49–57 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Cui, H. et al. Inhibition of glutaminase 1 attenuates experimental pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 61, 492–500 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015). This study elegantly links abnormal fatty acid oxidation to fibrogenesis.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Luengo, A., Gui, D. Y. & Vander Heiden, M. G. Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161–1180 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Vannella, K. M. & Wynn, T. A. Mechanisms of organ injury and repair by macrophages. Annu. Rev. Physiol. 79, 593–617 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Guilliams, M., Thierry, G. R., Bonnardel, J. & Bajenoff, M. Establishment and maintenance of the macrophage niche. Immunity 52, 434–451 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Borthwick, L. A. et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol. 9, 38–55 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Satoh, T. et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541, 96–101 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Wang, J. & Kubes, P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 165, 668–678 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Deniset, J. F. et al. Gata6+ pericardial cavity macrophages relocate to the injured heart and prevent cardiac fibrosis. Immunity 51, 131–140 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Adler, M. et al. Principles of cell circuits for tissue repair and fibrosis. iScience 23, 100841 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Henderson, N. C. et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 172, 288–298 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Lodyga, M. et al. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGFβ. Sci. Signal. 12, eaao3469 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Minutti, C. M. et al. A macrophage-pericyte axis directs tissue restoration via amphiregulin-induced transforming growth factor beta activation. Immunity 50, 645–654 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Pakshir, P. et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat. Commun. 10, 1850 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Diebold, R. J. et al. Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc. Natl Acad. Sci. USA 92, 12215–12219 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    McEntee, C. P., Gunaltay, S. & Travis, M. A. Regulation of barrier immunity and homeostasis by integrin-mediated transforming growth factor β activation. Immunology 160, 139–148 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Kelly, A. et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J. Exp. Med. 215, 2725–2736 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Barczyk, M., Carracedo, S. & Gullberg, D. Integrins. Cell Tissue Res. 339, 269–280 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Robertson, I. B. & Rifkin, D. B. Regulation of the bioavailability of TGFβ and TGFβ-related proteins. Cold Spring Harb. Perspect. Biol. 8, a021907 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Reed, N. I. et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl. Med. 7, 288ra79 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Munger, J. S. et al. A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGFβ1. Cell 96, 319–328 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGFβ1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Shi, M. et al. Latent TGFβ structure and activation. Nature 474, 343–349 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Dong, X. et al. Force interacts with macromolecular structure in activation of TGFβ. Nature 542, 55–59 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Dong, X., Hudson, N. E., Lu, C. & Springer, T. A. Structural determinants of integrin β-subunit specificity for latent TGFβ. Nat. Struct. Mol. Biol. 21, 1091–1096 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Campbell, M. G. et al. Cryo-EM reveals integrin-mediated TGFβ activation without release from latent TGFβ. Cell 180, 490–501 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Hahm, K. et al. αvβ6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Wang, B. et al. Role of αvβ6 integrin in acute biliary fibrosis. Hepatology 46, 1404–1412 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Peng, Z. W. et al. Integrin αvβ6 critically regulates hepatic progenitor cell function and promotes ductular reaction, fibrosis, and tumorigenesis. Hepatology 63, 217–232 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Horan, G. S. et al. Partial inhibition of integrin αvβ6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177, 56–65 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    Puthawala, K. et al. Inhibition of integrin αvβ6, an activator of latent transforming growth factor-β, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 177, 82–90 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Araya, J. et al. Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients. J. Clin. Invest. 117, 3551–3562 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    Kitamura, H. et al. Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8-mediated activation of TGFβ. J. Clin. Invest. 121, 2863–2875 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Minagawa, S. et al. Selective targeting of TGFβ activation to treat fibroinflammatory airway disease. Sci. Transl. Med. 6, 241ra79 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 117.

    Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Barron, L. & Wynn, T. A. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G723–G728 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Park, M. J. et al. IL-1–IL-17 signaling axis contributes to fibrosis and inflammation in two different murine models of systemic sclerosis. Front. Immunol. 9, 1611 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Wilson, M. S. et al. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 207, 535–552 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Wang, B. Z. et al. Interleukin-17A antagonist attenuates radiation-induced lung injuries in mice. Exp. Lung Res. 40, 77–85 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    Sun, B. et al. Role of interleukin 17 in TGFβ signaling-mediated renal interstitial fibrosis. Cytokine 106, 80–88 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 124.

    Feng, W. et al. IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp. Mol. Pathol. 87, 212–218 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Fabre, T. et al. Type 3 cytokines IL-17A and IL-22 drive TGFβ-dependent liver fibrosis. Sci. Immunol. 3, eaar7754 (2018).

    PubMed 

    Google Scholar
     

  • 126.

    Tan, Z. et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J. Immunol. 191, 1835–1844 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Zhang, S. et al. Neutralization of interleukin-17 attenuates cholestatic liver fibrosis in mice. Scand. J. Immunol. 83, 102–108 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Zhang, X. W. et al. Antagonism of interleukin-17A ameliorates experimental hepatic fibrosis by restoring the IL-10/STAT3-suppressed autophagy in hepatocytes. Oncotarget 8, 9922–9934 (2017).

    PubMed 

    Google Scholar
     

  • 129.

    Fabre, T., Kared, H., Friedman, S. L. & Shoukry, N. H. IL-17A enhances the expression of profibrotic genes through upregulation of the TGFβ receptor on hepatic stellate cells in a JNK-dependent manner. J. Immunol. 193, 3925–3933 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Oh, K. et al. Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice. J. Exp. Med. 208, 1707–1719 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 131.

    Wree, A. et al. NLRP3 inflammasome driven liver injury and fibrosis: roles of IL-17 and TNF in mice. Hepatology 67, 736–749 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 132.

    Gasse, P. et al. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One 6, e23185 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 133.

    Lemmers, A. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646–657 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 134.

    Macek Jilkova, Z. et al. Progression of fibrosis in patients with chronic viral hepatitis is associated with IL-17+ neutrophils. Liver Int. 36, 1116–1124 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 135.

    Yang, D. et al. Dysregulated lung commensal bacteria drive interleukin-17b production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity 50, 692–706 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 136.

    Seki, E. et al. TLR4 enhances TGFβ signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 137.

    de Kretser, D. M. et al. Serum activin A and B levels predict outcome in patients with acute respiratory failure: a prospective cohort study. Crit. Care 17, R263 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Gieseck, R. L., III, Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 139.

    Hams, E. et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl Acad. Sci. USA 111, 367–372 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    Jessup, H. K. et al. Intradermal administration of thymic stromal lymphopoietin induces a T cell- and eosinophil-dependent systemic Th2 inflammatory response. J. Immunol. 181, 4311–4319 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 141.

    McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 142.

    Vannella, K. M. et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci. Transl. Med. 8, 337ra65 (2016).

    PubMed 

    Google Scholar
     

  • 143.

    Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J. Exp. Med. 194, 809–821 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 144.

    Kaviratne, M. et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGFβ independent. J. Immunol. 173, 4020–4029 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 145.

    Gieseck, R. L. III et al. Interleukin-13 activates distinct cellular pathways leading to ductular reaction, steatosis, and fibrosis. Immunity 45, 145–158 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 146.

    Hart, K. M. et al. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGFβ. Sci. Transl. Med. 9, eaal3694 (2017). This study identified opposing roles for type 2 immunity in metabolic syndrome and liver fibrosis in an experimental model of NASH.

    PubMed 

    Google Scholar
     

  • 147.

    Chiaramonte, M. G., Donaldson, D. D., Cheever, A. W. & Wynn, T. A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J. Clin. Invest. 104, 777–785 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 148.

    Xue, J. et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat. Commun. 6, 7158 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 149.

    Liu, L. et al. CD4+ T lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis. Am. J. Nephrol. 36, 386–396 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 150.

    Chung, S. I. et al. IL-13 is a therapeutic target in radiation lung injury. Sci. Rep. 6, 39714 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 151.

    Singh, B., Kasam, R. K., Sontake, V., Wynn, T. A. & Madala, S. K. Repetitive intradermal bleomycin injections evoke T-helper cell 2 cytokine-driven pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L796–L806 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 152.

    Sciurba, J. C. et al. Fibroblast-specific integrin-alpha V differentially regulates type 17 and type 2 driven inflammation and fibrosis. J. Pathol. 248, 16–29 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 153.

    Wang, M. et al. Cross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 144, 1254–1264 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Choy, D. F. et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med. 7, 301ra129 (2015).

    PubMed 

    Google Scholar
     

  • 155.

    Ramalingam, T. R. et al. Enhanced protection from fibrosis and inflammation in the combined absence of IL-13 and IFN-γ. J. Pathol. 239, 344–354 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 156.

    Tang, W. et al. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J. Clin. Invest. 98, 2845–2853 (1996). This paper identified autocrine IL-11–IL-11R signaling in fibroblasts as a key mechanism driving cardiovascular fibrosis in response to a variety of stimuli.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 157.

    Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 110–115 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 158.

    Ng, B. et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci. Transl. Med. 11, eaaw1237 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Abreu, M. T. et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 123, 679–688 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 160.

    Rieder, F. et al. Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn’s disease behavior. Inflamm. Bowel Dis. 16, 263–274 (2010).

    PubMed 

    Google Scholar
     

  • 161.

    Rieder, F. et al. Serum anti-glycan antibodies predict complicated Crohn’s disease behavior: a cohort study. Inflamm. Bowel Dis. 16, 1367–1375 (2010).

    PubMed 

    Google Scholar
     

  • 162.

    Rieder, F., Kessler, S., Sans, M. & Fiocchi, C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G786–G801 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 163.

    Moresco, E. M., LaVine, D. & Beutler, B. Toll-like receptors. Curr. Biol. 21, R488–R493 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 164.

    Månsson, L. E. et al. MyD88 signaling promotes both mucosal homeostatic and fibrotic responses during Salmonella-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G311–G323 (2012).

    PubMed 

    Google Scholar
     

  • 165.

    Imai, J. et al. Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. Mucosal Immunol. 12, 632–643 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 166.

    Jacob, N. et al. Inflammation-independent TL1A-mediated intestinal fibrosis is dependent on the gut microbiome. Mucosal Immunol. 11, 1466–1476 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 167.

    Otte, J. M., Rosenberg, I. M. & Podolsky, D. K. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 124, 1866–1878 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 168.

    Zhao, S. et al. Selective deletion of MyD88 signaling in α-SMA positive cells ameliorates experimental intestinal fibrosis via post-transcriptional regulation. Mucosal Immunol. 13, 665–678 (2020). This study highlights a selective mechanism by which bacteria activate myofibroblasts through flagellin.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 169.

    Chan, C. C. et al. Prognostic value of plasma endotoxin levels in patients with cirrhosis. Scand. J. Gastroenterol. 32, 942–946 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 170.

    Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48, 322–335 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 171.

    Sun, L. et al. Lipopolysaccharide enhances TGFβ1 signalling pathway and rat pancreatic fibrosis. J. Cell. Mol. Med. 22, 2346–2356 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 172.

    Yang, L. et al. TRIF differentially regulates hepatic steatosis and inflammation/fibrosis in mice. Cell. Mol. Gastroenterol. Hepatol. 3, 469–483 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 173.

    Mazagova, M. et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J. 29, 1043–1055 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 174.

    Leaf, I. A. et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Invest. 127, 321–334 (2017).

    PubMed 

    Google Scholar
     

  • 175.

    Jialal, I., Major, A. M. & Devaraj, S. Global Toll-like receptor 4 knockout results in decreased renal inflammation, fibrosis and podocytopathy. J. Diabetes Complications 28, 755–761 (2014).

    PubMed 

    Google Scholar
     

  • 176.

    Liu, J. H. et al. A novel inhibitor of homodimerization targeting MyD88 ameliorates renal interstitial fibrosis by counteracting TGFβ1-induced EMT in vivo and in vitro. Kidney Blood Press. Res. 43, 1677–1687 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 177.

    Stifano, G. et al. Chronic Toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis. Arthritis Res. Ther. 16, R136 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 178.

    Liang, J. et al. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat. Med. 22, 1285–1293 (2016). This work discovered an anti-fibrotic mechanism for hyaluronan in pulmonary fibrosis, revealing a novel function for TLR4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 179.

    Pilling, D. et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J. Immunol. 179, 4035–4044 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 180.

    Nakagawa, N. et al. Pentraxin-2 suppresses c-Jun/AP-1 signaling to inhibit progressive fibrotic disease. JCI Insight 1, e87446 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 181.

    Rogliani, P., Calzetta, L., Cavalli, F., Matera, M. G. & Cazzola, M. Pirfenidone, nintedanib and N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Pulm. Pharmacol. Ther. 40, 95–103 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 182.

    Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 183.

    Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 184.

    Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 185.

    Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 186.

    Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 187.

    Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 188.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 189.

    Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 190.

    Dudley, J. T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 3, 96ra76 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 191.

    Torok, N. J., Dranoff, J. A., Schuppan, D. & Friedman, S. L. Strategies and endpoints of antifibrotic drug trials: summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology 62, 627–634 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 192.

    Rieder, F. et al. An expert consensus to standardise definitions, diagnosis and treatment targets for anti-fibrotic stricture therapies in Crohn’s disease. Aliment. Pharmacol. Ther. 48, 347–357 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 193.

    Montesi, S. B., Désogère, P., Fuchs, B. C. & Caravan, P. Molecular imaging of fibrosis: recent advances and future directions. J. Clin. Invest. 129, 24–33 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 194.

    Montesi, S. B. et al. Type I collagen-targeted positron emission tomography imaging in idiopathic pulmonary fibrosis: first-in-human studies. Am. J. Respir. Crit. Care Med. 200, 258–261 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Article